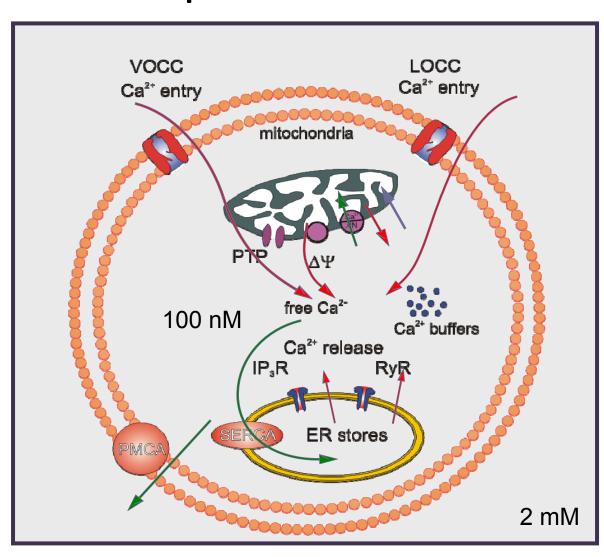
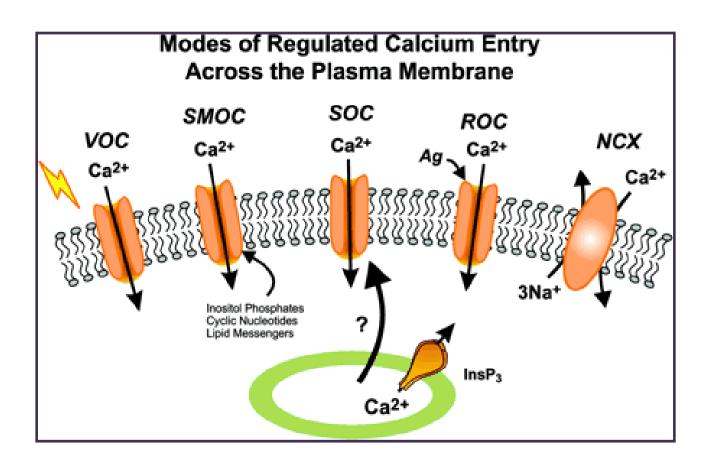


Нана Владимировна Войтенко

Универсальный, вездесущий свободный кальций - методы измерения

Киев 2015



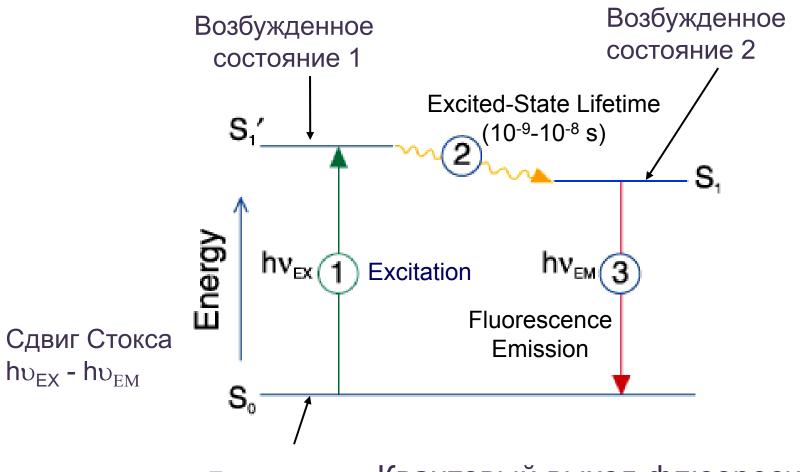


- Ионы кальция относятся к наиболее распространенным ионам в организме. В клетке большая их часть находится в связанном с цитоплазматическими белками состоянии или в клеточных органеллах, в том числе в эндоплазматическом ретикулуме, ядре, митохондриях и лизосомах. Лишь небольшая часть кальция находится в ионизированном виде, но именно она обладает функцией универсального вторичного посредника и играет главную роль во внутриклеточной регуляции.
- В нервных клетках роль ионов кальция в первую очередь связывают с регуляцией возбудимости, освобождением медиаторов и долгодлящимися изменениями эффективности синаптической передачи.
- Изменения некоторых аспектов регуляции цитозольного уровня [Ca²⁺]_і может быть причиной нарушения проведения сигналов при различных физиологических и патофизиологических состояниях.

Механизмы кальциевой регуляции в нервной клетке

Кальцивые каналы

ВАЖНО


• Ионы кальция невозможно визуализировать

• Существуют специальные молекулы, которые меняют свои оптические свойства при связывании с ионами кальция

• Концентрация ионов кальция может изменяться за миллисекунды

Флуоресценция

- Является результатом возбуждения молекул флуорофоров или флуоресцентных зондов
- Характеризуется: поглощением, временем жизни, интенсивностью, спектрами возбуждения и излучения
- Является результатом трехступенчатого процесса:
 - Возбуждение
 - Пребывание в возбужденном состоянии
 - Эмиссия флуоресценции

Базовое состояние

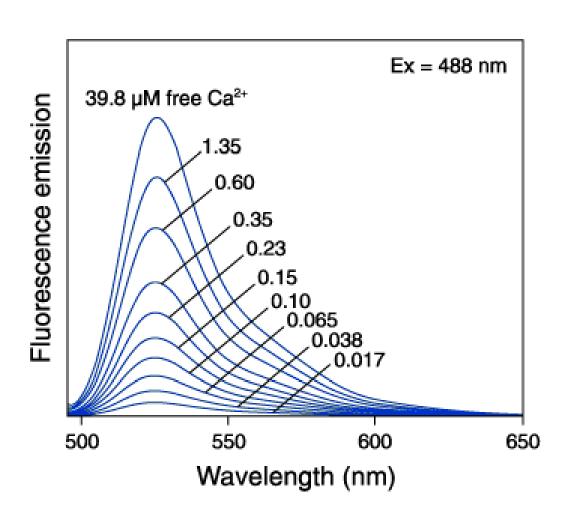
Квантовый выход флюоресценции

Число излученных фотонов (ступень 3)

Число поглощенных фотонов (ступень 1)

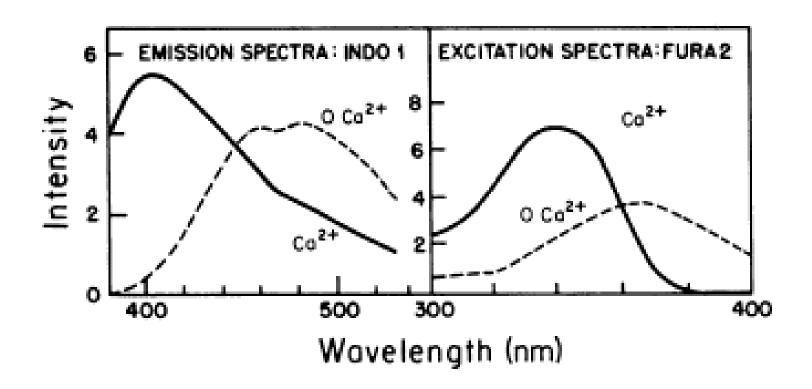
Флуоресцентные зонды: критерии выбора

- Измерение
 - Качественное или количественное
 - В каком клеточном компартменте
- Диапазон кальциевой концентрации
 - Константа диссоциации (К_d)
 - Возможность детекции от $0.1 K_d$ до $10 K_d$
- Метод загрузки
- Другие физиологические параметры
 - Одновременный patch-clamp


Флуоресцентные зонды Ультрафиолетовое возбуждение

- Высокоафинные индикаторы
 - Quin-2 и его производные
- Среднеафинные индикаторы
 - Fura-4F, Fura-5F и Fura-6F
 - Benzothiaza-1 и 2
- Низкоафинные индикаторы
 - Fura-FF, BTC, Mag-Fura-2, Mag-Fura-5 и Mag-Indo-1

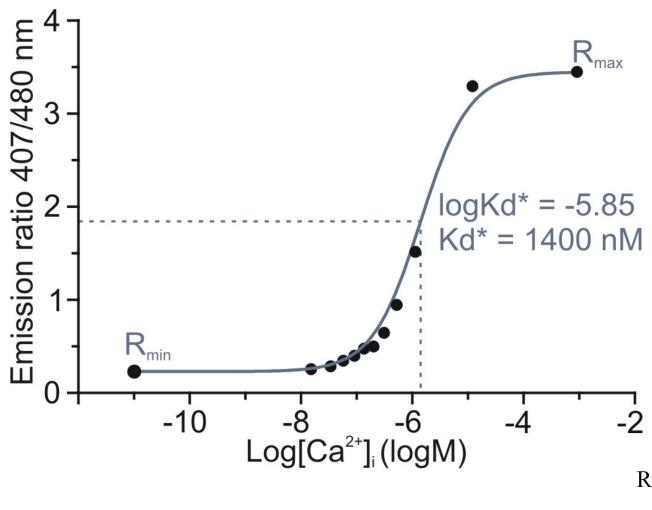
Флуоресцентные зонды Возбуждение видимым светом


- Высокоафинные индикаторы
 - Fluo-4, Rhod-2 и их производные
 - Calcium Green, Calcium Orange, Calcium Crimson
 - Oregon Green 488 BAPTA индикаторы
 - Fura Red
- Низкоафинные индикаторы
 - Fluo-5N, Rhod-5N, X-Rhod-5N и их производные

Ca2+-зависимый спектр флуоресцентного излучения Fluo-3

Двухволновые флуоресцентные зонды Ультрафиолетовое возбуждение

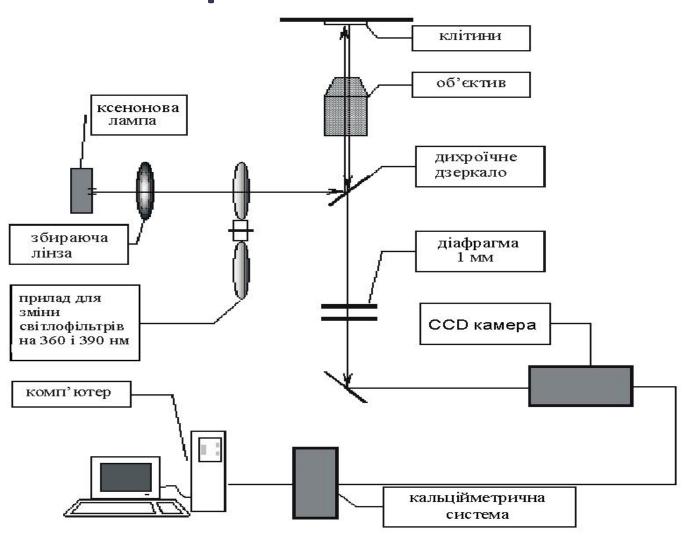
Fura-2, Indo-1 и их производные

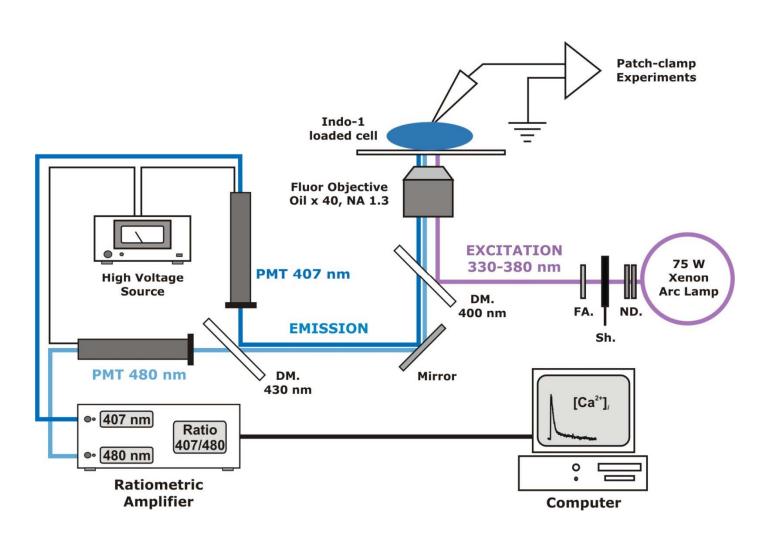


Grynkiewicz equation

$$\left[\operatorname{Ca}^{2+}\right]_{i} = \operatorname{K}_{d}^{*} \times \left(\frac{\operatorname{R} - \operatorname{R}_{min}}{\operatorname{R}_{max} - \operatorname{R}}\right)$$

где R - is the measured two-wavelengths fluorescence ratio, Rmin is the ratio at zero [Ca²+], Rmax is the ratio for a saturating [Ca²+], Kd* represents the apparent dissociation constant for Ca2+ binding to the dye. To be able to estimate $[Ca²+]_i$, the free [Ca²+] needs to be related to a value of the two-wavelengths fluorescence ratio. To do so, it is necessary to undergo a calibration procedure in order to determine the Kd* parameters.

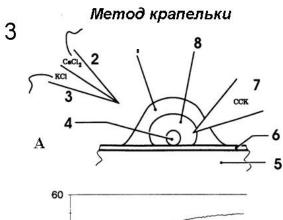

Калибровка

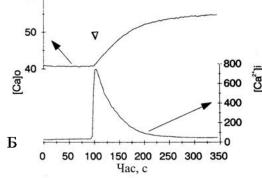

Calibration curve for the determination of the free intracellular Ca²⁺ concentration ([Ca²⁺]_i) using the indo-1 fluorescence ratio. The parameters R*min*, R*max*, and K*d** were determined by fitting the following curve to the data points:

$$R = \left[\frac{R_{min} - R_{max}}{1 + \left(\frac{\left[Ca^{2+} \right]_i}{K_d^*} \right)^n} \right] + R_{max}$$

Экспериментальная установка для визуализации кальция с помощью красителя fura-2

Экспериментальная установка для визуализации кальция с помощью красителя indo-1





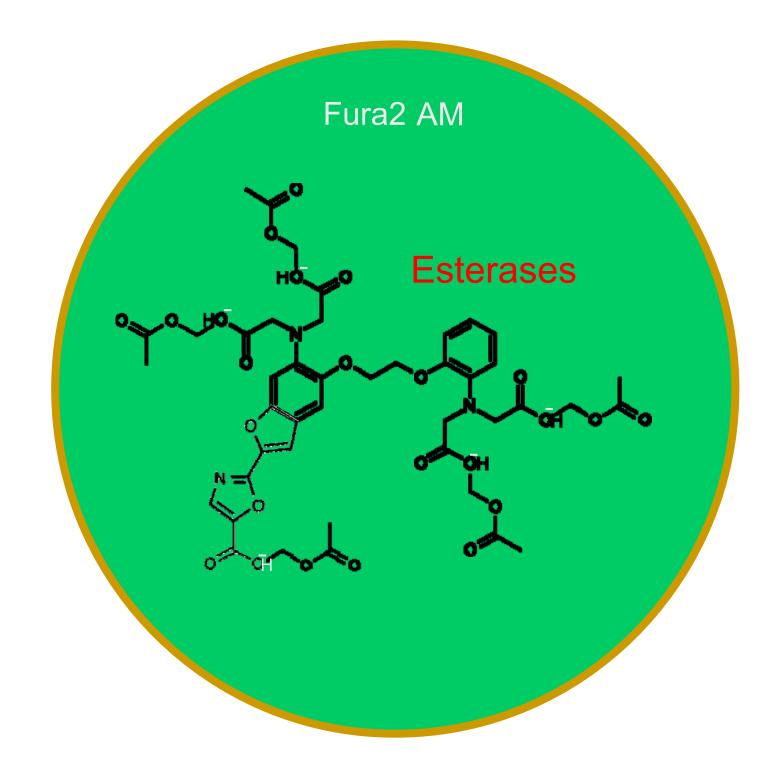
Метод капельки

А. Схематичний рисунок, пояснюючий проведення експериментів з крапелькою. 1 - Мінеральна опія, 2 - хпорид кальцію, 3 - хпорид капію, 4 - клітина, наповнена капьцій – чутливим барвником, 5 - покривне скельце, 6 - шар сипікону, 7 - авоніст мобілівації кальцію у цитозоль ацинарних клітин – холецистокінін (ССК), 8 - інший кальцій – чутливий барвник у зовнішньоклітинному розчині у крапельці.

Б. Приклад вимірювань у краплинці. Зміни концентрації вільного внутрішньоклітинного кальцію (нижня крива, права вісь, нМ) і загального зовнішньоклітинного кальцію ([Са]о) (верхня крива, піва вісь, мкМ) як результат стимуляції високою дозою ССК.

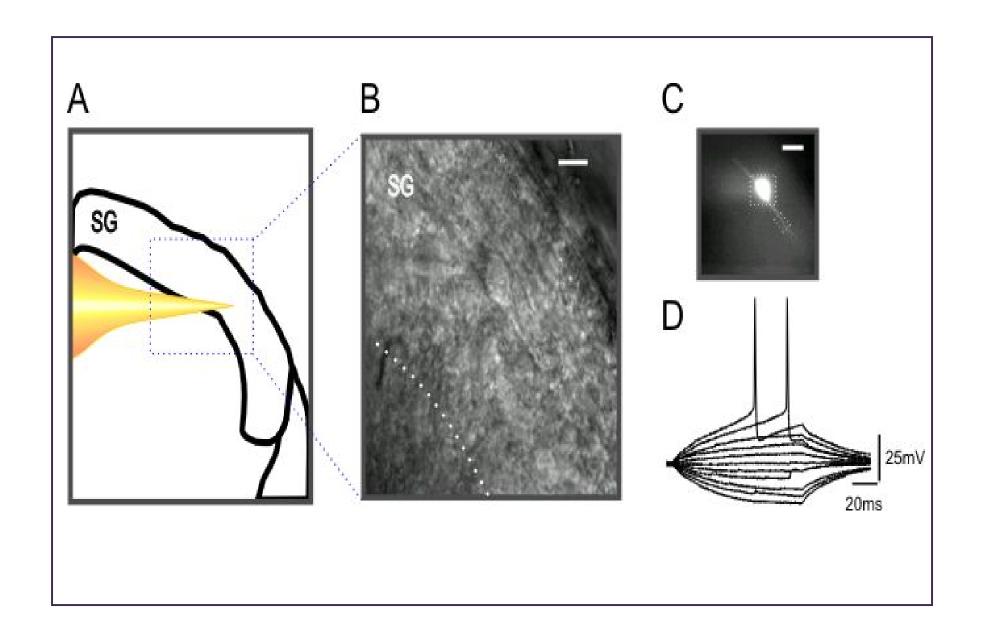
Ratiometric vs. NonRatiometric

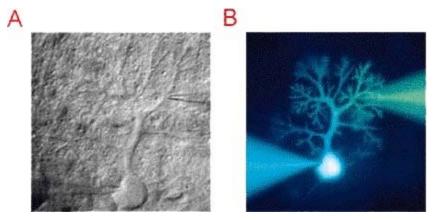
Ratiometric

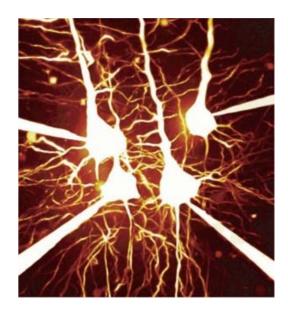

- Красители indo-1 and fura-2
- Позволяют производить коррекцию, связанную с изменением объема и концентрации красителя
- Позволяют определять абсолютную концентрацию ионов кальция
- Требуют более сложного оборудования и калибровки

Nonratiometric

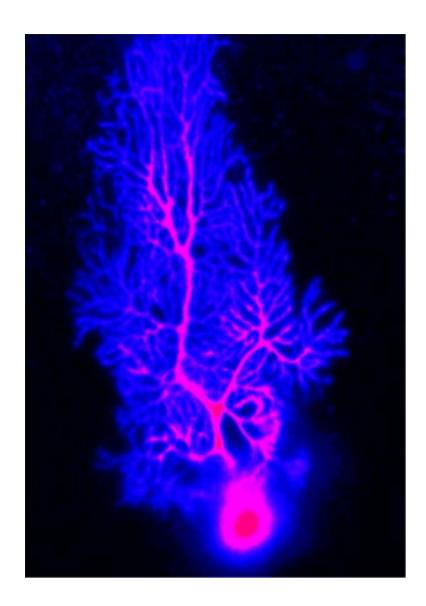
- Красители fluo-3, rhod-2 и семейство Calcium Green
- Позволяют определять относительные изменения концентрации ионов кальция
- Простота использования


Процедура загрузки зонда


- Загрузка АМ-форм (эфирных) красителя
 - Derivatized with an AM (acetoxymethyl) ester
 - Passively diffuses through plasma membrane
 - Subject to compartmentalization or incomplete hydrolysis

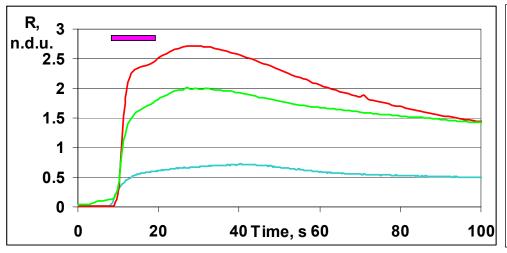

• Микроинъекция

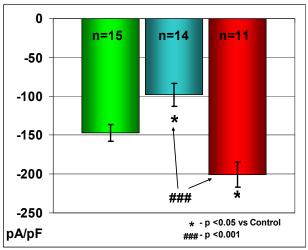
- Инъекция индикатора, растворенного во внутриклеточном растворе через стеклянный микроэлектрод под давлением или с помощью электрофореза
- Загрузка через Patch-Clamp пипетку
 - Пассивная диффузия и диализ внутриклеточного содержимого

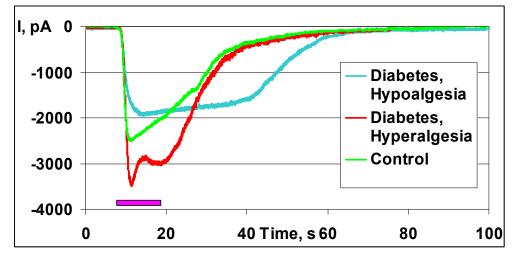


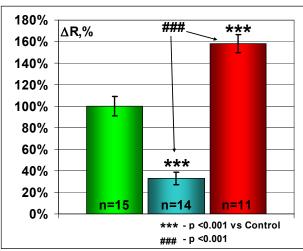
Simultaneous somatic and dendritic patch-clamp recording from a Purkinje cell in a cerebellar cortex slice. A, infrared differential interference contrast image. B, fluorescence image

Simultaneous quadruple patch-clamp recording from layer 5 pyramidal neurons in a cortical brain slice. Neurons were filled with a fluorescent calcium indicator and imaged with 2-photon laser-scanning microscopy.


Hot calcium in a Purkinje neuron.


Потенциальные проблемы и методы их разрешения


- Внутриклеточная буферизация
 - Индикатор может изменять [Ca²⁺], при загрузке в высоких концентрациях
- Цитотоксичность
 - Могут повреждать некоторые типы клеток
 - Могут влиять на редокс-метаболизм или пролиферацию клеток
- Автофлуоресценция
 - Коллагеновые волокна и кальцификаты могут давать автофлуоресценцию
 - Пиридиновые нуклиотиды также могут автофлуоресцировать. (NADH, NADP, FAD, и FMN)
- Выгорание
 - Слишком сильное освещение
 - Может быть уменьшено оксигинированием или добавлением антиоксидантов
- Компартментализация
 - Индикаторы захватываются внутриклеточными органеллами; распределение индикаторов по клетке теряет гомогенность
- Связывание с другими ионами и протеинами
 - Индикаторы могут связываться с внутиклеточными белками или ионами и менять свои спектральные и кинетические свойства, а также константу диссоциации
- Вытекание красителя
 - Индикаторы могут вытекать из клетки во внеклеточную среду
 - Вытекание регулируется системой траиспорта анионов
 - Оно может быть уменьшено понижением температуры



VR1 рецептор-опосредованные сигналы в нейронах гипо- и гипер-алгезических диабетических крыс

Take Home Message

- Кальциевая сигнализация объединяет мембранную возбудимость и биологическую функцию клетки. Из-за чрезвычайной чувствительности живой клетки к изменению внутриклеточной концентрации ионов кальция, даже относительно небольшие отклонения в кальциевой сигнализации могут привести к разрушительным последствиям.
- Нарушения внутриклеточной кальциевой сигнализации можно рассматривать как один из общих механизмов изменения передачи сигналов при различных патологиях.

Спасибо за внимание!

